Processing math: 25%

수학 (기타)2017. 12. 12. 12:45

Theorem. π is irrational.


Assume that π is rational. Then π=q/p for some positive integer p,q. Let nN and define a polynomial fn(x) by

fn(x)=pnxn(πx)nn!=xn(qpx)nn!.

Since the polynomial x(qpx) has a maximum value at the point x=q2p=π2, fn(x)fn(π2) for any 0xπ. Let Mn be the maximum value of fn(x). Then

Mn=fn(π2)=pnπ2nn!22n.

Since

lim

for any positive number a, we obtain \lim_{n\rightarrow\infty}M_n = 0

Define I_n by

I_n = \int_0^\pi f_n(x)\sin xdx.

Since f_n(x)>0 and \sin x > 0 for any x\in(0,\pi), we have I_n>0. Since f_n(x)\leq M_n for any n\in\mathbb{N} and 0\leq x\pi

I_n \leq \int_0^\pi M_n\sin xdx = 2M_n.

Thus 0<I_n\leq 2M_n for any n\in\mathbb{N}. Since M_n\rightarrow 0 as n\rightarrow\infty, there is N\in\mathbb{N} such that M_n < 1/4 for all n\geq N. Thus 0<I_n<1 for any n\geq N.

On the other hand, Note that f^{(k)}(x) = 0 if k > 2n. Then

I_n = \int_0^\pi f_n(x)\sin xdx = \left[-f_n(x)\cos x + f'_n(x)\sin x - \cdots \pm f_n^{(2n)}(x)\cos x\right]_0^\pi.

Note that f^{(k)}(0) = f^{(k)}(\pi) = 0 if 0\leq k< n, by the definition of the polynomial f_n(x). If n\leq k< 2n-1, then

\begin{eqnarray} f_n^{(k)}(x) & = & p^{n}n(n-1)\cdots(n-(k-n))\left[(-1)^{k-n}(\pi-x)^{n-(k-n)} + (-1)^nx^{n-(k-n)}\right] \\ & & +\sum_{i=k-(n-1)}^{n-1}c_ix^{n-i}(\pi-x)^{n-(k-i)} \end{eqnarray}

for some numbers c_i. Thus

\begin{eqnarray} f_n^{(k)}(0) & = & n(n-1)\cdots(2n-k)(-1)^{k-n}p^{k-n}q^{2n-k} \\ f_n^{(k)}(\pi) & = & n(n-1)\cdots(2n-k)(-1)^np^{k-n}q^{2n-k} \end{eqnarray}

if n\leq k<n-1. Note that

f_n^{(2n-1)}(x) = p^nn!\left[(-1)^{n-1}(\pi-x) - x\right]

and so f_n^{(2n-1)}(0) = n!(-1)^{n-1}p^{n-1}q and f_n^{(2n-1)}(\pi) = n!p^{n-1}q^n. Note also that

f^{(2n)}_n(x) = (-1)^np^{n}n!.

Thus f^{(k)}(\pi) and f^{(k)}(0) are integer for any 0\leq k\leq 2n. Since

\begin{eqnarray} I_n & = & \left[-f_n(x)\cos x + f'_n(x)\sin x - \cdots \pm f_n^{(2n)}(x)\cos x\right]_0^\pi \\ & = & \sum_{n\leq k\leq 2n, \ \textrm{$k$ is even}}(-1)^{k/2+1}\left[f_n^{(k)}(\pi)\cos\pi - f_n^{(k)}(0)\cos 0\right] \\ & = & \sum_{n\leq k\leq 2n, \ \textrm{$k$ is even}}(-1)^{k/2}\left[f_n^{(k)}(0) + f_n^{(k)}(\pi)\right], \end{eqnarray}

I_n must be an integer. But it contradicts that 0<I_n<1 if n\geq N. \Box



이 글을 네이버 블로그에서 보기 (링크)


매우 오래 전에 쓴 글이라 어디서 참고를 한건지 모르겠네요... 아마 Wikipedia를 참고했을 가능성이 높습니다.


Wikipedia에 다양한 증명들이 있으니 참고해보셔도 될 것 같습니다 (링크).




Posted by CAMERAMAN