Processing math: 7%

수학 (기타)2017. 12. 12. 12:45

Theorem. π is irrational.


Assume that π is rational. Then π=q/p for some positive integer p,q. Let nN and define a polynomial fn(x) by

fn(x)=pnxn(πx)nn!=xn(qpx)nn!.

Since the polynomial x(qpx) has a maximum value at the point x=q2p=π2, fn(x)fn(π2) for any 0xπ. Let Mn be the maximum value of fn(x). Then

Mn=fn(π2)=pnπ2nn!22n.

Since

lim

for any positive number a, we obtain \lim_{n\rightarrow\infty}M_n = 0

Define I_n by

I_n = \int_0^\pi f_n(x)\sin xdx.

Since f_n(x)>0 and \sin x > 0 for any x\in(0,\pi), we have I_n>0. Since f_n(x)\leq M_n for any n\in\mathbb{N} and 0\leq x\pi

I_n \leq \int_0^\pi M_n\sin xdx = 2M_n.

Thus 0<I_n\leq 2M_n for any n\in\mathbb{N}. Since M_n\rightarrow 0 as n\rightarrow\infty, there is N\in\mathbb{N} such that M_n < 1/4 for all n\geq N. Thus 0<I_n<1 for any n\geq N.

On the other hand, Note that f^{(k)}(x) = 0 if k > 2n. Then

I_n = \int_0^\pi f_n(x)\sin xdx = \left[-f_n(x)\cos x + f'_n(x)\sin x - \cdots \pm f_n^{(2n)}(x)\cos x\right]_0^\pi.

Note that f^{(k)}(0) = f^{(k)}(\pi) = 0 if 0\leq k< n, by the definition of the polynomial f_n(x). If n\leq k< 2n-1, then

\begin{eqnarray} f_n^{(k)}(x) & = & p^{n}n(n-1)\cdots(n-(k-n))\left[(-1)^{k-n}(\pi-x)^{n-(k-n)} + (-1)^nx^{n-(k-n)}\right] \\ & & +\sum_{i=k-(n-1)}^{n-1}c_ix^{n-i}(\pi-x)^{n-(k-i)} \end{eqnarray}

for some numbers c_i. Thus

\begin{eqnarray} f_n^{(k)}(0) & = & n(n-1)\cdots(2n-k)(-1)^{k-n}p^{k-n}q^{2n-k} \\ f_n^{(k)}(\pi) & = & n(n-1)\cdots(2n-k)(-1)^np^{k-n}q^{2n-k} \end{eqnarray}

if n\leq k<n-1. Note that

f_n^{(2n-1)}(x) = p^nn!\left[(-1)^{n-1}(\pi-x) - x\right]

and so f_n^{(2n-1)}(0) = n!(-1)^{n-1}p^{n-1}q and f_n^{(2n-1)}(\pi) = n!p^{n-1}q^n. Note also that

f^{(2n)}_n(x) = (-1)^np^{n}n!.

Thus f^{(k)}(\pi) and f^{(k)}(0) are integer for any 0\leq k\leq 2n. Since

\begin{eqnarray} I_n & = & \left[-f_n(x)\cos x + f'_n(x)\sin x - \cdots \pm f_n^{(2n)}(x)\cos x\right]_0^\pi \\ & = & \sum_{n\leq k\leq 2n, \ \textrm{$k$ is even}}(-1)^{k/2+1}\left[f_n^{(k)}(\pi)\cos\pi - f_n^{(k)}(0)\cos 0\right] \\ & = & \sum_{n\leq k\leq 2n, \ \textrm{$k$ is even}}(-1)^{k/2}\left[f_n^{(k)}(0) + f_n^{(k)}(\pi)\right], \end{eqnarray}

I_n must be an integer. But it contradicts that 0<I_n<1 if n\geq N. \Box



이 글을 네이버 블로그에서 보기 (링크)


매우 오래 전에 쓴 글이라 어디서 참고를 한건지 모르겠네요... 아마 Wikipedia를 참고했을 가능성이 높습니다.


Wikipedia에 다양한 증명들이 있으니 참고해보셔도 될 것 같습니다 (링크).




Posted by CAMERAMAN
수학 (기타)2017. 12. 8. 21:05


:: Laplace Transform Table ::


Function

Laplace Transform

Remarks

f(x)

\mathcal{L}\{f\}(s) = \int_0^\infty f(x)e^{-sx}dx

Definition

af(x) +bg(x)

a\mathcal{L}\{f\}(s) + b\mathcal\{g\}(s)

Linearity

xf(x)

-\left(\mathcal{L}\{f\}\right)'(s)


x^nf(x)

(-1)^n\left(\mathcal{L}\{f\}\right)^{(n)}(s)

 

f'(x)

s\mathcal{L}\{f\}(s) - f(0)

 

f^{(n)}(x)

s^n\mathcal{L}\{f\}(s) - \sum_{k=1}^ns^{n-k}f^{(k-1)}(0)

 

\frac{f(x)}{x}

\int_s^\infty \mathcal{L}\{f\}(\sigma)d\sigma


\int_0^xf(t)dt

\frac{\mathcal{L}\{f\}(s)}{s}

 

e^{ax}f(x)

\mathcal{L}\{f\}(s-a)

 

f(x-a)u(x-a)

e^{-as}\mathcal{L}\{f\}(s)

 

f(ax)

\frac{1}{a}\mathcal{L}\{f\}(s)

 

(f*g)(x)

\mathcal{L}\{f\}(s)\mathcal{L}\{g\}(s)

 


Function

Laplace Transform

Remarks

f(x)

\mathcal{L}\{f\}(s) = \int_0^\infty f(x)e^{-sx}dx

Definition

\delta(x)

1

\delta : Dirac Delta Function

u(x)

\frac{1}{s}

u(x) : Step Function

\sqrt[n]{x}u(x)

\frac{1}{s^{\frac{1}{n}+1}}\Gamma\left(\frac{1}{n}+1\right)

 

\sin(a x)u(x)

\frac{a}{s^2+a^2}

 

\cos(ax)u(x)

\frac{s}{s^2+a^2}

 

\sinh(ax)u(x)

\frac{a}{s^2-a^2}

 

\cosh(ax)u(x)

\frac{s}{s^2-a^2}

 



Wikipedia의 Laplace Transform 항목을 참고하였습니다.





Posted by CAMERAMAN
수학 (기타)2017. 12. 6. 12:49

Fourier Transform Table

Function

Fourier Transform

Remarks

f(x)

\widehat{f}(\omega) = \int_{-\infty}^\infty f(x)e^{-i\omega x}dx

Definition

af(x) + bg(x)

a\widehat{f}(\omega) + b\widehat{g}(\omega)

Linearity

f(x-a)

e^{-ia\omega}\widehat{f}(\omega)

Shift in Time Domain

f(x)e^{iax}

\widehat{f}(x-a)

Shift in Frequency Domain

f(ax)

\frac{1}{|a|}\widehat{f}\left(\frac{\omega}{a}\right)

 

\widehat{f}(x)

\frac{1}{2\pi}f(-\omega)

Duality

f'(x)

i\omega\widehat{f}(\omega)

 

f^{(n)}(x)

(i\omega)^n\widehat{f}(\omega)

 

xf(x)

i\frac{d\widehat{f}}{d\omega}(\omega)

 

x^nf(x)

i^n\frac{d^n\widehat{f}}{d\omega^n}(\omega)

 

(f*g)(x)

\widehat{f}(\omega)\widehat{g}(\omega)

Convolution

f(x)g(x)

\left(\widehat{f}*\widehat{g}\right)(\omega)

 

\overline{f(x)}

\overline{\widehat{f}(-\omega)}

 

f(x)\cos(ax)

\frac{\widehat{f}(\omega-a) + \widehat{f}(\omega+a)}{2}

 

f(x)\sin(ax)

\frac{\widehat{f}(\omega-a) - \widehat{f}(\omega+a)}{2i}

 

\int_{-\infty}^xf(t)dt, \ \textrm{where} \ \int_{-\infty}^\infty f(x)dx = 0

\frac{\widehat{f}(\omega)}{i\omega}

 

\int_{-\infty}^xf(t)dt

\frac{\widehat{f}(\omega)}{i\omega} + \pi\widehat{f}(0)\delta(\omega)


※ 단, \delta는 Dirac delta function.


Function

Fourier Transform

Remarks

f(x)

\widehat{f}(\omega) = \int_{-\infty}^\infty f(x)e^{-i\omega x}dx

Definition

\mathrm{rect}(x)

\frac{\sin(\omega/2)}{\omega/2}

\mathrm{rect}(x) = \left\{\begin{array}{ll} 1 & \textrm{if $|x|\leq 1/2$} \\ 0 & \textrm{otherwise} \end{array}\right.

e^{-ax}u(x), a>0

\frac{1}{a+i\omega}

u(x) = \left\{\begin{array}{ll} 1 & \textrm{if $x>0$} \\ 0 & \textrm{otherwise} \end{array}\right.

e^{-x^2}

\sqrt{\pi}e^{-\omega^2/4}

 

e^{-|x|}

\frac{2}{1+\omega^2}

 

1

2\pi\delta(\omega)


\delta(x)

1

 

\cos(x)

\pi\left[\delta(\omega-1) + \delta(\omega + 1)\right]

 

\sin(x)

-i\pi\left[\delta(\omega-1) - \delta(\omega+1)\right]

 

u(x)

\frac{1}{i\omega} + \pi\delta(\omega)

u(x) = \left\{\begin{array}{ll} 1 & \textrm{if $x>0$} \\ 0 & \textrm{otherwise} \end{array}\right.

\mathrm{sgn}(x)

\frac{2}{i\omega}

\mathrm{sgn}(x) = \left\{\begin{array}{ll} 1 & \textrm{if $x>0$} \\ -1 & \textrm{otherwise} \end{array}\right.

※ 단, \delta는 Dirac delta function.


Wikipedia의 Fourier Transform 항목을 참고하였습니다.


네이버 블로그에서 보기 (링크)

Posted by CAMERAMAN
수학 (기타)2017. 12. 5. 21:02




:: Preliminaries ::


Definition. 함수 f:\mathbb{R}\rightarrow\mathbb{R}\mathbb{R}에서 적분가능하고 조각마다 연속(piecewisely continuous)일 때, f푸리에 변환(Fourier transform of f)을 기호로 \widehat{f} 또는 \mathfrak{F}(f)으로 쓰고, 다음과 같은 함수로 정의한다.

\widehat{f}:\mathbb{R}\rightarrow\mathbb{R}, \quad \widehat{f}(\omega) = \int_{-\infty}^\infty f(x)e^{-i\omega x}dx


Theorem. 함수 f,g:\mathbb{R}\rightarrow\mathbb{R}\mathbb{R}에서 적분가능하고 조각마다 연속일 때, 다음이 성립한다.

(1) 임의의 실수 a,b\in\mathbb{R}에 대하여 \mathfrak{F}(af+bg) = a\mathfrak{F}(f) + b\mathfrak{F}(g)이다. 

(2) \widehat{f'} = i\omega\widehat{f}.

(3) \widehat{f*g} = \widehat{f}\widehat{g}.

(4) a\in\mathbb{R}에 대하여 함수 f_a:\mathbb{R}\rightarrow\mathbb{R}f_a(x) = f(x+a)으로 정의하자. 그러면 \widehat{f_a}(\omega) = e^{ia\omega}\widehat{f}(\omega)이다.

(5) 함수 fx\in\mathbb{R}에서 연속이면 다음이 성립한다.

f(x) = \frac{1}{2\pi}\int_{-\infty}^\infty \widehat{f}(\omega)e^{i\omega x}d\omega

만약 fx\in\mathbb{R}에서 불연속이면 다음이 성립한다.

\frac{f(x+0) + f(x-0)}{2} = \frac{1}{2\pi}\int_{-\infty}^\infty\widehat{f}(\omega)e^{i\omega x}d\omega

(6) \widehat{f} = \widehat{g}이면 f = g이다.



:: Solution ::


함수 f_0, h

f_0(x) = \left\{\begin{array}{ll} 1-|x| & \textrm{if $|x|\leq 1$} \\ 0 & \textrm{otherwise}\end{array}\right.,

h(x) = \left\{\begin{array}{ll} \cos(\pi x) & \textrm{if $k\leq x\leq k+8$} \\ 0 & \textrm{otherwise}\end{array}\right.

으로 정의하고, 함수 H,K를 다음과 같이 정의하자.

H(x) = \int_{-\infty}^xh(t)dt, \quad K(x) = \int_{-\infty}^xH(t)dt

그러면 임의의 t\in\mathbb{R}에 대하여

g(t) = \int_k^{k+8}f(x)\cos(\pi x)dx = \int_{-\infty}^\infty h(x)f_0(x-t)dx = (h*f_0)(t)

이다. 이때

\mathrm{Rect}(x) = \left\{\begin{array}{ll} 1 & \textrm{if $|x|\leq 1/2$} \\ 0 & \textrm{otherwise}\end{array}\right.

라고 하자. 그러면 f_0 = \mathrm{Rect}*\mathrm{Rect}이므로 g = h*\mathrm{Rect}*\mathrm{Rect}이다. 이때 함수 g_0g_0 = h*\mathrm{Rect}으로 정의하자. 그러면

\begin{eqnarray}\widehat{\mathrm{Rect}}(\omega) & = & \int_{-\infty}^\infty\mathrm{Rect}(x)e^{-i\omega x}dx = \int_{-1/2}^{1/2}e^{-i\omega x}dx \\& = & \frac{1}{-i\omega}\left[e^{-i\omega x}\right]^{1/2}_{-1/2} = \frac{e^{i\omega/2} - e^{-i\omega/2}}{i\omega}\end{eqnarray}

이므로

i\omega\widehat{g_0}(\omega) = i\omega\widehat{\mathrm{Rect}}(\omega)\widehat{h}(\omega) = e^{i\omega/2}\widehat{h}(\omega) - e^{-i\omega/2}\widehat{h}(\omega)

이다. 따라서

g_0'(t) = h\left(t+\frac{1}{2}\right) - h\left(t-\frac{1}{2}\right)

이다. 이때 임의의 실수 t \leq k-1/2에 대하여 g_0(t) = 0이므로

g_0(t) = \int_{-\infty}^tg_0'(\tau)d\tau = H\left(t+\frac{1}{2}\right) - H\left(t-\frac{1}{2}\right)

다. 그리고 g = g_0*\mathrm{Rect}이므로

i\omega\widehat{g}(\omega) = e^{i\omega/2}\widehat{g_0}(\omega) - e^{-i\omega/2}\widehat{g_0}(\omega)

이다. 따라서

g'(t) = g_0\left(t+\frac{1}{2}\right) - g_0\left(t-\frac{1}{2}\right) = H(t+1) + H(t-1) - 2H(t)

이다. 임의의 실수 t\leq k-1에 대하여 g(t) = 0이므로,

\begin{eqnarray}g(t) & = & \int_{-\infty}^tg'(\tau)d\tau = \int_{-\infty}^t\left[H(\tau+1) + H(\tau-1) - 2H(\tau)\right]d\tau \\ & = & K(t+1) + K(t-1) - 2K(t)\end{eqnarray}

이다. 이때

H(x) = \int_{-\infty}^xh(t)dt = \left\{\begin{array}{ll}\frac{1}{\pi}\sin(\pi x) & \textrm{if $k\leq x\leq k+8$} \\ 0 & \textrm{otherwise}\end{array}\right.,

K(x) = \int_{-\infty}^xH(t)dt = \left\{\begin{array}{ll}-\frac{1+\cos(\pi x)}{\pi^2} & \textrm{if $k\leq x\leq k+8$} \\ 0 & \textrm{otherwise}\end{array}\right.

임을 이용하면 함수 g를 구할 수 있다. 


원본 글 링크





Posted by CAMERAMAN