수학 (기타)2017. 12. 8. 21:05


:: Laplace Transform Table ::


Function

Laplace Transform

Remarks

$$f(x)$$

$$\mathcal{L}\{f\}(s) = \int_0^\infty f(x)e^{-sx}dx$$

Definition

$$af(x) +bg(x)$$

$$a\mathcal{L}\{f\}(s) + b\mathcal\{g\}(s)$$

Linearity

$$xf(x)$$

$$-\left(\mathcal{L}\{f\}\right)'(s)$$


$$x^nf(x)$$

$$(-1)^n\left(\mathcal{L}\{f\}\right)^{(n)}(s)$$

 

$$f'(x)$$

$$s\mathcal{L}\{f\}(s) - f(0)$$

 

$$f^{(n)}(x)$$

$$s^n\mathcal{L}\{f\}(s) - \sum_{k=1}^ns^{n-k}f^{(k-1)}(0)$$

 

$$\frac{f(x)}{x}$$

$$\int_s^\infty \mathcal{L}\{f\}(\sigma)d\sigma$$


$$\int_0^xf(t)dt$$

$$\frac{\mathcal{L}\{f\}(s)}{s}$$

 

$$e^{ax}f(x)$$

$$\mathcal{L}\{f\}(s-a)$$

 

$$f(x-a)u(x-a)$$

$$e^{-as}\mathcal{L}\{f\}(s)$$

 

$$f(ax)$$

$$\frac{1}{a}\mathcal{L}\{f\}(s)$$

 

$$(f*g)(x)$$

$$\mathcal{L}\{f\}(s)\mathcal{L}\{g\}(s)$$

 


Function

Laplace Transform

Remarks

$$f(x)$$

$$\mathcal{L}\{f\}(s) = \int_0^\infty f(x)e^{-sx}dx$$

Definition

$$\delta(x)$$

$$1$$

$\delta$ : Dirac Delta Function

$$u(x)$$

$$\frac{1}{s}$$

$u(x)$ : Step Function

$$\sqrt[n]{x}u(x)$$

$$\frac{1}{s^{\frac{1}{n}+1}}\Gamma\left(\frac{1}{n}+1\right)$$

 

$$\sin(a x)u(x)$$

$$\frac{a}{s^2+a^2}$$

 

$$\cos(ax)u(x)$$

$$\frac{s}{s^2+a^2}$$

 

$$\sinh(ax)u(x)$$

$$\frac{a}{s^2-a^2}$$

 

$$\cosh(ax)u(x)$$

$$\frac{s}{s^2-a^2}$$

 



Wikipedia의 Laplace Transform 항목을 참고하였습니다.





Posted by CAMERAMAN