:: Laplace Transform Table ::
Function |
Laplace Transform |
Remarks |
$$f(x)$$ |
$$\mathcal{L}\{f\}(s) = \int_0^\infty f(x)e^{-sx}dx$$ |
Definition |
$$af(x) +bg(x)$$ |
$$a\mathcal{L}\{f\}(s) + b\mathcal\{g\}(s)$$ |
Linearity |
$$xf(x)$$ |
$$-\left(\mathcal{L}\{f\}\right)'(s)$$ |
|
$$x^nf(x)$$ |
$$(-1)^n\left(\mathcal{L}\{f\}\right)^{(n)}(s)$$ |
|
$$f'(x)$$ |
$$s\mathcal{L}\{f\}(s) - f(0)$$ |
|
$$f^{(n)}(x)$$ |
$$s^n\mathcal{L}\{f\}(s) - \sum_{k=1}^ns^{n-k}f^{(k-1)}(0)$$ |
|
$$\frac{f(x)}{x}$$ |
$$\int_s^\infty \mathcal{L}\{f\}(\sigma)d\sigma$$ |
|
$$\int_0^xf(t)dt$$ |
$$\frac{\mathcal{L}\{f\}(s)}{s}$$ |
|
$$e^{ax}f(x)$$ |
$$\mathcal{L}\{f\}(s-a)$$ |
|
$$f(x-a)u(x-a)$$ | $$e^{-as}\mathcal{L}\{f\}(s)$$ |
|
$$f(ax)$$ | $$\frac{1}{a}\mathcal{L}\{f\}(s)$$ |
|
$$(f*g)(x)$$ | $$\mathcal{L}\{f\}(s)\mathcal{L}\{g\}(s)$$ |
|
Function |
Laplace Transform |
Remarks |
$$f(x)$$ |
$$\mathcal{L}\{f\}(s) = \int_0^\infty f(x)e^{-sx}dx$$ |
Definition |
$$\delta(x)$$ |
$$1$$ |
$\delta$ : Dirac Delta Function |
$$u(x)$$ |
$$\frac{1}{s}$$ |
$u(x)$ : Step Function |
$$\sqrt[n]{x}u(x)$$ |
$$\frac{1}{s^{\frac{1}{n}+1}}\Gamma\left(\frac{1}{n}+1\right)$$ |
|
$$\sin(a x)u(x)$$ |
$$\frac{a}{s^2+a^2}$$ |
|
$$\cos(ax)u(x)$$ |
$$\frac{s}{s^2+a^2}$$ |
|
$$\sinh(ax)u(x)$$ |
$$\frac{a}{s^2-a^2}$$ |
|
$$\cosh(ax)u(x)$$ |
$$\frac{s}{s^2-a^2}$$ |
|
Wikipedia의 Laplace Transform 항목을 참고하였습니다.
'수학 (기타)' 카테고리의 다른 글
원주율의 무리성 증명 (Irrationality of $\pi$, by Niven) (0) | 2017.12.12 |
---|---|
푸리에 변환 표 (Fourier transform Table) (0) | 2017.12.06 |
푸리에 변환(Fourier Transform)을 이용하여 2018학년도 수능 수학 가형 30번 풀기 (0) | 2017.12.05 |